Атомные электростанции и их опасность - Информация для сталкеров - Документы - Каталог статей - Новосибирский фан-сайт игры STALKER
Суббота, 10.12.2016, 16:43 Приветствую Вас Бродяга
Болт - это сила! Болт - это аргумент!

main forum downloads public galery
Меню сайта
Категории раздела
Информация для сталкеров [34]
Полезные статьи про радиацию, использование противогазов и т.д.
Интервью [18]
НЛО [1]
Статьи от разработчиков [2]
Опросы
Лучшая защита в Зоне

PDA списки
Инфа
Сталкеров голосовало: 178
Статистика

Всего
Пользователей
Гостей
На сайте всего: 1
Проходящих: 1
Сталкеров: 0

Полная статистика

Ваш IP-адрес
INFOBAR
Главная » Статьи » Документы » Информация для сталкеров

Атомные электростанции и их опасность

Введение.

Опасна ли ядерная энергетика? Этим вопросом особенно часто стали задаваться в последнее время, особенно после аварий на атомных электростанциях Тримайл-Айленд и Чернобыльской АЭС. И если опасность все же имеется, то каким образом можно уменьшить риск неприятных последствий аварии? И где же причина того или иного фактора опасности? Ответу на эти вопросы и посвящена данная работа.

В данном докладе будут посвещены основные вопросы устройства и работы атомных электростанций и ядерных реакторов, проведена сравнительная характеристика различных типов ядерных реакторов, разъяснены причины их опасности.


Немного ядерной физики.

Для лучшего уяснения принципов работы ядерного реактора и смысла процессов, происходящих в нем, вкратце изложим основные моменты физики реакторов.

·         Ядерный реактор - аппарат, в котором происходят ядерные реакции - превращения одних химических элементов в другие. Для этих реакций необходимо наличие в реакторе делящегося вещества, которое при своем распаде выделяет элементарные частицы, способные вызвать распад других ядер.

·         Деление атомного ядра может произойти самопроизвольно или при попадании в него элементарной частицы. Самопроизвольный распад в ядерной энергетике не используется из-за очень низкой его интенсивности.

·         В качестве делящегося вещества в настоящее время могут использоваться изотопы урана — уран-235 и уран-238, а также плутоний-239.

·         В ядерном реакторе происходит цепная реакция. Ядра урана или плутония распадаются, при этом образуются два-три ядра элементов середины таблицы Менделеева, выделяется энергия, излучаются гамма-кванты и образуются два или три нейтрона, которые, в свою очередь, могут прореагировать с другими атомами и, вызвав их деление, продолжить цепную реакцию. Для распада какого-либо атомного ядра необходимо попадание в него элементарной частицы с определенной энергией (величина этой энергии должна лежать в определенном диапазоне: более медленная или более быстрая частица просто оттолкнется от ядра, не проникнув в него). Наибольшее значение в ядерной энергетике имеют нейтроны.

·         В зависимости от скорости элементарной частицы выделяют два вида нейтронов: быстрые и медленные. Нейтроны разных видов по-разному влияют на ядра делящихся элементов.

·         Уран-238 делится только быстрыми нейтронами. При его делении выделяется энергия и образуется 2-3 быстрых нейтрона. Вследствие того, что эти быстрые нейтроны замедляются в веществе урана-238 до скоростей, неспособных вызвать деление ядра урана-238, цепная реакция в уране-238 протекать не может.

·         Поскольку в естественном уране основной изотоп - уран-238, то цепная реакция в естественном уране протекать не может.

·         В уране-235 цепная реакция протекать может, так как наиболее эффективно его деление происходит, когда нейтроны замедлены в 3-4 раза по сравнению с быстрыми, что происходит при достаточно длинном их пробеге в толще урана без риска быть поглощенными посторонними веществами или при прохождении через вещество, обладающее свойством замедлять нейтроны, не поглощая их.

·         Поскольку в естественном уране имеется достаточно большое количество веществ, поглощающих нейтроны (тот же уран-238, который при этом превращается в другой делящийся изотоп - плутоний-239), то в современных ядерных реакторах необходимо для замедления нейтронов применять не сам уран, а другие вещества, мало поглощающие нейтроны (например, графит или тяжелая вода).

·         Обыкновенная вода нейтроны замедляет очень хорошо, но сильно их поглощает. Поэтому для нормального протекания цепной реакции при использовании в качестве замедлителя обыкновенной легкой воды необходимо использовать уран с высокой долей делящегося изотопа - урана-235 (обогащенный уран). Обогащенный уран производят по достаточно сложной и трудоемкой технологии на горнообогатительных комбинатах, при этом образуются токсичные и радиоактивные отходы.

·         Графит хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании графита в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды.

·         Тяжелая вода очень хорошо замедляет нейтроны и плохо их поглощает. Поэтому при использовании тяжелой воды в качестве замедлителя можно использовать менее обогащенный уран, чем при использовании легкой воды. Но производство тяжелой воды очень трудоемко и экологически опасно.

·         При попадании медленного нейтрона в ядро урана-235 он может быть захвачен этим ядром. При этом произойдет ряд ядерных реакций, итогом которых станет образование ядра плутония-239. (Плутоний-239 в принципе может тоже использоваться для нужд ядерной энергетики, но в настоящее время он является одним из основных компонентов начинки атомных бомб.) Поэтому ядерное топливо в реакторе не только расходуется, но и нарабатывается. У некоторых ядерных реакторов основной задачей является как раз такая наработка.

·         Другим способом решить проблему необходимости замедления нейтронов является создание реакторов без необходимости их замедлять - реакторов на быстрых нейтронах. В таком реакторе основным делящимся веществом является не уран, а плутоний. Уран же (используется уран-238) выступает как дополнительный компонент реакции - от быстрого нейтрона, выпущенного при распаде ядра плутония, произойдет распад ядра урана с выделением энергии и испусканием других нейтронов, а при попадании в ядро урана замедлившегося нейтрона он превратится в плутоний-239, возобновляя тем самым запасы ядерного топлива в реакторе. В связи с малой величиной поглощения нейтронов плутонием цепная реакция в сплаве плутония и урана-238 идти будет, причем в ней будет образовываться большое количество нейтронов.

·         Таким образом, в ядерном реакторе должен использоваться либо обогащенный уран с замедлителем, поглощающем нейтроны, либо необогащенный уран с замедлителем, мало поглощающем нейтроны, либо сплав плутония с ураном без замедлителя. О различных типах ядерных реакторов, реализующих эти три возможности разными способами, будет говориться дальше.


Сравнение.

Если подводить итог, то стоит сказать следующее. Реакторы ВВЭР достаточно безопасны в эксплуатации, но требуют высокообогащенного урана. Реакторы РБМК безопасны лишь при правильной их эксплуатации и хорошо разработанных системах защиты, но зато способны использовать малообогащенное топливо или даже отработанное топливо ВВЭР-ов. Реакторы на тяжелой воде всем хороши, но уж больно дорого добывать тяжелую воду. Технология производства реакторов с шаровой засыпкой еще недостаточно хорошо разработана, хотя этот тип реакторов стоило бы признать наиболее приемлемым для широкого применения, в частности, из-за отсутствия катастрофических последствий при аварии с разгоном реактора. За реакторами на быстрых нейтронах - будущее производства топлива для ядерной энергетики, эти реакторы наиболее эффективно используют ядерное топливо, но их конструкция очень сложна и пока еще малонадежна.


                             Факторы опасности ядерных реакторов.

Факторы опасности ядерных реакторов достаточно многочисленны. Перечислим лишь некоторые из них.

·         Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности.

Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.

·         Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их.

Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.

·         Необходимость захоронения отработавшего реактора.

На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.

·         Радиоактивное облучение персонала.

Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции.

Ядерный взрыв ни в одном реакторе произойти в принципе не может.


Заключение.

Атомная энергетика - активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран - достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов. В связи с этим необходимо закладывать решение проблемы безопасности (в частности, предупреждение аварий с разгоном реактора, локализацию аварии в пределах биозащиты, уменьшение радиоактивных выбросов и др.) еще в конструкцию реактора, на стадии его проектирования.

Стоит также рассматривать другие предложения по повышению безопасности объектов атомной энергетики, как то: строительство атомных электростанций под землей, отправка ядерных отходов в космическое пространство.

Целью настоящей работы было всего лишь рассказать о современной атомной энергетике, показать устройство и основные типы ядерных реакторов. К сожалению, объем доклада не позволяет более подробно остановиться на вопросах физики реактора, тонкостях конструкции отдельных типов и вытекающих из них проблем эксплуатации, надежности и безопасности.

Категория: Информация для сталкеров | Добавил: Акула (28.02.2011)
Просмотров: 952 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
ПДА Чат
Поиск
Друзья сайта







Мини-профиль
Бродяга



СТАЛКЕР!
Сталкер, это Зона Отчуждения! Либо иди заполнять документы, чтобы тебе выдали пропуск, либо покажи если есть!
Зона ждет тебя!
Оформить документы
Вломиться!

PR-CY.ru Яндекс.Метрика
Проверка сайта